
The Effect of Input Knowledge on Creativity

Simon Colton, Alison Pease, Graeme Ritchie
Division of Informatics
University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN

United Kingdom
{simonco,alisonp,graeme }@dai.ed.ac.uk

Abstract

Recently, many programs have been written to perform tasks
which are usually regarded as requiring creativity in humans.
We can derive some commonalities between these programs
in order to build further creative programs. Key to this is the
derivation of certain measures which assess how creative a
program is. Starting from recent proposals by Ritchie, we
define possible measures which describe the extent to which
a program produces novel output. We discuss how this relates
to the creativity of the program.

Introduction
There has been much debate about machine creativity in ar-
tificial intelligence, cognitive science and philosophy. How-
ever, only recently have sufficient numbers of creative pro-
grams become available for us derive some commonalities
between them. Such commonalities allow us to suggest
ways in which creative programs can be designed, utilised
and assessed. An important part of this process is the deter-
mination of a set of measures which can be used to estimate
the creativity of a program.

Under certain circumstances, it may be possible to use
such measures to determine whether one program is more
creative than another. However, the circumstances would
have to be very special, taking the design, input and output
of both programs into consideration, and it is still likely that
such a comparison would be deemed unfair. Similarly, it
may be possible to use measures of creativity to determine
whether a program is being creative at all, but this is also
problematic, because creativity is such an overloaded and
highly subjective word. For instance, Cohen’s AARON pro-
gram (Cohen 1995)1 is cited as creative by many people, but
is not thought of as creative by its author.

The worth of measures of creativity therefore lies in us-
ing them in the design of creative programs rather than the
assessment of established programs. If we can agree upon
a set of measures of creativity of programs, then someone
writing a program can use these as a guideline for increas-
ing the creativity of the program. If a new version of the
program is assessed more favourably by some of the mea-
sures than the previous version, it is likely that progress has
been made.
c© S. Colton, A. Pease, G. Ritchie 2001

1Currently available at www.kurzweilcyberart.com

For any program which purports to be creative, an impor-
tant question is the extent to which its design (including the
algorithms and data it uses) is contrived to produce partic-
ular outputs. That is, has the program been ‘fine-tuned’ to
generate specific results? Evidence of fine-tuning can affect
our perception of how creative a program has been. For in-
stance, one of the reasons that Lenat’s AM program (Lenat
1982) appears creative is that it began by working in set the-
ory, but switched to number theory, with its best results aris-
ing in the latter domain. However, our willingness to ac-
cept AM as creative is lowered by the evidence provided in
(Ritchie & Hanna 1984) that AM’s ‘decision’ to regard bags
as numbers — which led it to investigate number theory —
was the result of certain carefully crafted knowledge.

In order to address the question of how the knowledge in-
put to a program affects its creativity, we first discuss the
nature of the kinds of program to which our measures of
creativity apply and give some examples of such programs.
We then draw on Popper’s philosophy of science to motivate
our investigation into fine-tuning. Following this, we give an
overview of Ritchie’s previous work on measuring creativ-
ity (Ritchie 2001), and discuss how we will build on these.
We then introduce the notion of a creative set and use this to
derive some measures of fine-tuning which affect the assess-
ment of creativity in programs. Finally, we perform a case
study using the AM and HR mathematical theory formation
programs (Lenat 1982), (Colton 2001).

Background
We first discuss the types of programs for which our mea-
sures will be meaningful, both by identifying properties they
share and by surveying some relevant programs. Following
this, we motivate our study of fine-tuning by making an anal-
ogy between creative programs and theories as described in
Popper’s philosophy of science.

Creative Programs
Following (Ritchie 2001), we restrict our discussion to pro-
grams which produce novel artefacts which can be quali-
tatively assessed by a human. The artefacts can be jokes,
mathematical conjectures, poems, melodies, paintings, etc.,
but the restriction of qualitatively assessing them is impor-
tant. To a large extent, this rules out programs such as com-
puter algebra systems, where it is rare for the output from

a calculation to be described as good, bad or anything in-
between. Occasionally, the output of a calculation might be
surprising, but this was not the expectation beforehand. On
the other hand, with the creative systems we discuss here,
the reason for running the program is to produce something
which is not only novel but which can be considered of high
quality. For this reason, these programs often spend much of
their time internally assessing the artefacts they produced in
order to prune and order their output, and direct their search.

Recent creative programs of the type we are interested
in include the JAPE joke generator (Binsted 1996), the HR
mathematical theory formation program (Colton, Bundy, &
Walsh 1999), the MuzaCazUza melody generator (Ribeiroet
al. 2001) and the ASPERA poetry generator (Gervás 2001).
We give a brief overview of these programs below, in order
to derive some commonalities not only in their output, but
also in the knowledge input to them.

The JAPE program (Binsted 1996) produces simple pun-
ning riddles such as:

What do you get when you cross
a monkey and a peach?
An ape-ricot.

Although Binsted carefully does not claim that her pro-
gram is creative, JAPE is the type of program that we are
interested in, since its output can be judged as to its qual-
ity (as a joke), and the aim of the exercise was to have the
program creating items of as high-quality as possible. Bin-
sted tested the output in a controlled fashion by showing it
to school children, who were asked to say, for each item, if
it was a joke, and how funny it was. On average, the out-
put items were deemed to be jokes, and fairly funny, though
not as funny as those published in joke books for children
(Binsted, Pain, & Ritchie 1997).

The HR program (Colton, Bundy, & Walsh 1999) (Colton
2001) performs theory formation in domains of pure mathe-
matics such as group theory, number theory and graph the-
ory. Given a little information about the domain of interest
comprising some fundamental concepts in the domain (such
as divisors in number theory), HR performs concept forma-
tion, conjecture making and (in algebraic domains) theorem
proving and counterexample finding. The process is driven
by the concept formation. That is, concepts are formed and
conjectures are proposed by looking for patterns in the ex-
amples of the concepts. The nature of the concepts formed
therefore dictates the nature of the conjectures.

There are 7 general production rules which turn one (or
two) old concepts into a new one. As discussed later, each
of these was introduced in order for HR to re-invent a clas-
sically interesting concept which it was not able to re-invent
before. HR uses a set of measures of interestingness to deter-
mine which is the most interesting concept at any one time.
This enables HR to build new concepts from the more inter-
esting ones before the less interesting ones. The measures
of interestingness include those which determine some in-
trinsic property of the concept, such as the complexity of
its definition, and some relative properties of the concept,
including how novel the categorisation it achieves is with

respect to the other concepts. Finally, there are measures
which determine whether the conjectures about a concept
add to the interestingness of that concept.

The MuzaCazUza program (Ribeiroet al. 2001) is a
melody generating program which is the successor to the
SICOM program (Pereiraet al. 1997). MuzaCazUza uses
case base reasoning to generate a melody given a harmonic
line over which to compose it. The cases comprise a chord,
its rhythm and melody, and are taken from (at present) pieces
from the Baroque period. Each case has attributes including
pitch, duration of the chord and duration of the preceding
and following chord.

When given a harmonic line, MuzaCazUza searches
through the entire case base and scores each case by match-
ing it with the input case. The score is taken as a weighted
sum which assesses how close the input case is to the base
case, using, amongst other techniques, Schöenberg’s chart
of the regions. The authors state in (Ribeiroet al. 2001)
that this is fairly limited approach, which often produces
obvious and less interesting solutions. They plan to give
MuzaCazUza some more of the properties of SICOM, such
as choosing from the best cases randomly. After the melody
has been generated, there is a more interactive phase where
the user can choose to apply transformations of the melody,
such as mirroring certain parts of it. The user can also
choose to adapt the piece using a tonal correction algorithm.

The ASPERA poetry generator also uses cased-based rea-
soning. ASPERA generates poetry from user-given prose
which contains an intended message for the poem. It uses
fragments of the text as keys for the case base which contains
corresponding poem fragments. The collection of poem
fragments comprises the skeleton poem and ASPERA re-
fines this using metrical rules to adapt the best matching
cases to the text provided. The adaptation takes place via
an abstraction to the linguistic categories of the words in the
poem fragments. The metric which performs the adaptation
is chosen to be the most appropriate for the user’s wishes.
The user is then asked whether the resulting poem is valid.
If so, then the lines of verse are analysed linguistically and
incorporated into the system data files.

We see that there are some similarities between these pro-
grams. Firstly, each program produces artefacts and the
quality of the artefacts is assessed either internally or with
the help of a user. In HR, measures of interestingness have
been derived to help it find the most interesting concepts
and conjectures first. In JAPE, an external assessment of
the jokes was undertaken using school children. In Muza-
CazUza, after the initial generation, there is an interactive
phase where the user can attempt to increase the quality of
the melody by applying transformations and tonal correc-
tions. In ASPERA, if the user validates a poem, then this
information is added to the data which the program will use
next time, in order to increase the quality of the output with
cases from validated poems.

There is also a similarity in the input to the programs,
with all the programs taking data as input and, to a large ex-
tent, having interchangeable algorithms for generation and
assessment of artefacts. We address this in detail later when
discussing the contributions to creativity.

Motivation from the Philosophy of Science
Following Tarski, Popper suggests that we divide the uni-
versal class of all statements into true and false,T andF ,
(Popper 1972). He claims that the aim of science is to dis-
cover theories (explanations) whose content covers as much
of T and as little ofF as possible, where the content of a the-
ory is the set of all statements logically entailed by it. This
set may also be divided into true and false statements (the
theory’s truth and falsity content). A good theory should
suggest where to look, i.e. new observations which we had
not thought of making before.

This is comparable to a situation where the universal class
of all basic items in a domain is divided into good and bad,
V andV ′. If we describe the content of a program as its
output setO which may be divided into good and bad arte-
facts, then we can claim that one aim of a creative program
is to generate as much ofV (and as little ofV ′) as possi-
ble. A good system should suggest new areas of the search
space to explore, i.e. find artefacts which we had not thought
of generating before. If we accept this analogy, then Pop-
per’s criteria for evaluating theories sheds light on criteria
for evaluating creative programs.

Popper sets out two criteria for a satisfactory theory (in
addition to it logically entailing what it explains). Firstly
it must not bead hoc. That is, the theory (explicans) can-
not itself be evidence for the phenomena to be explained
(explicandum), or vice versa. For example if the explican-
dum is ‘this rat is dead’, then it is not enough to suggest
that ‘this rat ate poison’ if the evidence for it having done
so is it being now dead. There must be independent evi-
dence, such as ‘the rat’s stomach contains rat poison’. The
opposite of anad hocexplanation is therefore one which is
independently testable. Secondly, a theory must be rich in
content. For example, a theory which explains phenomena
other than the specific phenomena it was designed to explain
has a much richer content, and therefore has greater value
than one which is less general (the principle of universality).

Applying these criteria to creative programs, if we see a
programP as the theory and the set of artefactsA we wish to
generate as the phenomena to be explained, then we are in-
terested in the independent testability ofP and the richness
of its content. A program which has been carefully tailored
in order to produce very specific artefacts cannot be claimed
to be a good program on the grounds that it produces those
artefacts. There must be independent grounds for its value,
such as also generating other valuable artefacts. Within the
programming analogy, this is clearly connected to the rich-
ness of content criterion; the more valuable artefacts outside
of A and fewer worthless artefacts a program generates, the
better that program is.

It is important to note that Popper’s criteria are general for
all scientific theories, applying to single statement explana-
tions as well as all-encompassing theories. They therefore
apply to any program (including subsets of larger programs)
able to generate artefacts inA. The conclusion of the anal-
ogy is that we should aim to make our programs as general
as possible. That is, any creative program which re-invents
already known artefacts should also generate a reasonable
number of new, valuable, artefacts.

Contributions to Creativity
In (Ritchie 2001), some measures of program creativity were
formally introduced. Ritchie suggested that judgements of
creativity take into account the fact that the program de-
signer is typically guided by some setI of (usually high-
valued) artefacts called theinspiring set. For instance, as
discussed in chapter 6 of (Colton 2001), in the development
of the HR program, the concept of Abelian groups was an in-
spiring concept and HR was developed in order to re-invent
that concept in the hope that it would also invent new con-
cepts of a similar nature. Other inspiring artefacts for HR in-
clude the concept of self-inversing elements and prime num-
bers, with more details given in chapter 6 of (Colton 2001).
Ritchie put forward a number of criteria for program creativ-
ity, all of which depended on a small set of factors, including
I, the program’s output setO and the subsetV of O which
was high-valued.

Ritchie suggested that, while an individual measure may
not be adequate for assessing creativity alone, an overall
measure of creativity could be formed by combining some
of these formulae (or other similar criteria). We add to these
measures by looking at the way particular knowledge may
contribute to the creativity of a program. In particular, we
derive measures which can be used to estimate how fine-
tuned a program is. Such measures are motivated by in-
stances of fine-tuning, such as the case with Lenat’s AM
described above, and also by the analogy with the philos-
ophy of science given above.

Following Ritchie, we assume that the artefacts produced
by the creative programs can be rated by humans according
to their ‘value’ (quality). While such a subjective judge-
ment of value is difficult in general, it is not impossible; see
for example, (Binsted 1996), (Colton 2001) or (Steel 1999).
Specifically, following Ritchie, we assume that a value-set,
V , of high valued artefacts can be extracted from the pro-
gram’s output setO. The output set can be determined either
by single or multiple runs, but in either case, it is taken to be
those artefacts actually produced by the program, rather than
those it could plausibly produce.

The degree of creativity in a program is partly determined
by the number of novel items of value it produces. Therefore
we are interested in the set of valuable items produced by the
program which exclude those in the inspiring setI. We call
this the creative set:

C = V − I

A programmer may increase the size ofC by using gen-
eral procedural methods as opposed to specific procedures
(which are more likely to produce items inI). A general
procedure might consist of dropping or negating a constraint
or altering a variable (for instance Kekulé’s discovery of
the benzene ring, in which he negated the constraint that
a string-molecule is an open curve (Boden 1992)). Such
heuristics have been gleaned from examining how previous
creative items were produced but are general enough to pro-
duce valuable items not yet envisaged. Therefore, the gener-
ality of the procedures in a program contributes to the degree
of creativity we attribute to it.

We need a formal account of the knowledgeinput to such
programs. This is not straightforward, as there is not a uni-
form set of items which comprise the input. Fortunately,
there is often a natural classification of the kinds of informa-
tion used by a program. For instance, the HR program uses a
set of 7 production rules for generating new concepts, along
with a set of measures of interestingness for the concepts
and conjectures produced. Furthermore in HR, for each ses-
sion, the user sets various parameters — mostly to dictate
the form of the heuristic search — and provides a few ini-
tial concepts from which all others follow. Similarly, in AM
there were 242 heuristics and 115 elementary concepts.

JAPE is primarily driven by three types of rule (schemata,
description-rules, and templates), all of which assume the
availability of a general purpose dictionary (in Binsted’s
main experiment, Wordnet (Milleret al. 1990) was used).
Although the rules may interact, in the sense that the oper-
ation of a particular schemata may result in an intermedi-
ate structure which only certain description-rules can use, or
the output of a description rule may be suitable only for cer-
tain templates, each rule has a meaning independently of the
other rules.

The data given to MuzaCazUza comprises the base cases
which enable it to generate melodies and the harmonic line
supplied by the user. In addition to this, there are techniques
for assessing how close the input case is to the base case
and (in SICOM, but suggested also for MuzaCazUza) differ-
ent possibilities for choosing a case from the best-matching
cases (e.g. randomly). Furthermore, the user is provided
with various transformations which they can apply to the
melodies produced, and these transformations also make up
the knowledge given to MuzaCazUza.

With ASPERA, the data supplied is also comprised of
the base cases and the user input, in this case some prose
which encompasses an intended meaning. Also, the met-
rical rules for adapting the poem fragments retrieved from
the case base to the prose, and the techniques for analysing
validated poems make up the knowledge given to ASPERA.

We see that the types of initial information include:

(i) procedures for generating artefacts

(ii) procedures for altering/adapting artefacts

(iii) calculations for evaluating artefacts

(iv) parameters for the search

(v) input data

We do not need to distinguish between these types here.
Some programs are designed so that, to allow experi-

ments, certain items from the above subsets are optional. For
example, the HR user can turn construction procedures and
measures of interestingness on and off, change parameters
and remove input data; in principle, the heuristics and ini-
tial concepts of AM include (we assume) some optional el-
ements; JAPE’s rules are independent in the sense that rules
could be added or removed to alter the set of jokes generated.
We therefore assume that the program can (at least theoret-
ically) operate with differentinput sets, and this variation
may affect the output.

Measures of Fine-Tuning
Let us now consider the case where input knowledge causes
a program to replicate known items to a greater extent than
it causes the generation of novel high-valued items; we sug-
gest that this captures the notion of ‘fine-tuning’.

We will write OK for the set of output artefacts corre-
sponding to input knowledgeK. Then we defineVK as the
set of high-valued items inOK ; RK as the ‘re-inventions’,
i.e. the artefacts inVK which were in the inspiring setI; and
CK as the creative set – those artefacts inVK which were
not originally inI (i.e.VK - RK).

If we remove a particular subsetK ′ from K, then
V(K−K′) may differ from VK . From this point, we shall
assume a fixed setK of available input knowledge, and con-
sider the effects of removing subsets of that overall knowl-
edge base. We can define three convenient terms:

•K ′ is creatively irrelevantif VK = V(K−K′)

•K ′ is creatively usefulif V(K−K′) ⊂ VK

•K ′ is creatively destructiveif VK ⊂ V(K−K′)

We are interested in the creatively destructive and es-
pecially the creatively useful subsets of knowledge. For
K ′ ⊆ K which is creatively useful, we define thedepen-
dency setof K ′, to be the setDK′ = VK−V(K−K′). This is
the set of high valued artefacts which will be missing from
the output ifK ′ is removed from the knowledge set.

As above, we defineRK = VK∩I (the re-inventions) and
CK = VK − I (the creative set). For a particular creatively
usefulK ′ ⊆ K, we can say thatK ′ is fine-tunedif:

|DK′ ∩RK | > 0 and|DK′ ∩ CK | = 0.

That is, the contribution ofK ′ to high-valued output is con-
fined to replicating elements of the inspiring set, with no
novel high-valued output being directly attributable toK ′.

For cases where|DK′ ∩ CK | > 0 (i.e. there are at least
some high-valued novel items contributed byK ′), we can
get an indication of how fine-tunedK ′ is by defining:

ft(K ′) =
|DK′ ∩RK |
|DK′ ∩ CK |

This returns a value greater than 1 ifK ′ is used to redis-
cover more artefacts than to find new ones of value, and 1
or less otherwise. Thus it captures the notion of a piece of
knowledge being introduced only in order to find particu-
lar elements of the inspiring set, with nothing else of value
being lost by removing that piece of knowledge.

So far, we have a measure for the extent to which some
individual subset of knowledge contributes to the fine-tuning
of the whole knowledge base. In the case whereK ′ = K,
it follows from our definitions that a program which fails to
produce any novel high-valued artefacts when usingK (i.e.
|DK ∩CK | = 0) but does replicate some of the inspiring set
(i.e. |DK ∩RK | > 0) is deemed to be fine-tuned.

It is also interesting to consider, in the more general case,
the extent to which there is fine-tuning in the various sub-
sets ofK. For this we need to be more selective about the
subsets we consider. Consider the case where a subsetK1

corresponds to a dependency setDK1 . That is, removingK1

from K will result in the setDK1 not forming part of the
program’s output. Suppose there is also a subsetK2 which
is creatively irrelevant in the sense defined above, and con-
siderK ′ = K1 ∪K2. If there is no interaction betweenK1

andK2, it is possible thatVK−V(K−K′) = VK−V(K−K1),
and henceDK′ = DK1 . This would mean that the larger
set, K ′, would be rated in the same way, with respect to
fine-tuning, asK1, which is intuitively untidy. To avoid this,
we introduce the following definition:

A subsetK ′ ⊆ K which is creatively useful, with depen-
dency setDK′ , non-redundantly contributes toVK if there
is no subsetK ′′ of K ′ such thatDK′′ = DK′ . Then in the
following two measures, which both give some assessment
of the extent of fine-tuning amongst the subsets ofK, we
restrict attention to the subsetsK ′ which non-redundantly
contribute toVK . These measures describe how fine-tuned
a programP is when using knowledgeK (assumingP was
constructed using inspiring setI):

•m1(P, I,K) = |Kft|
|K|

whereKft =
⋃

K′

{K′⊂K:K′ is fine−tuned}

•m2(P, I,K) = maximum offt(K ′) overK ′ ⊂ K

If m1 is greater than 0 orm2 greater than 1, we can claim
that P usingK has been fine-tuned to some extent. Ifm1

is 1, P usingK is completely fine-tuned, in the sense that
every item of knowledge inK contributes to some subset
(which non-redundantly contributes toVK) which is fine-
tuned. Ifm2 is greater than 1, then there is at least one such
subset ofK which is used more to replicate known artefacts
than to find new ones of value.

Case Studies
We pointed out earlier that it is not our intention to apply our
measures to established programs. Hence, as these measures
are new, and no programs have been developed with them in
mind, our case studies are more qualitative than quantitative.

AM is one of very few programs to have been criticised
for fine-tuning in the literature (Ritchie & Hanna 1984).
Ritchie and Hanna state that:

’... it is possible to gain the impression that the suc-
cessful “discovery” was the result of various specially
designed pieces of information, aimed at achieving this
effect.’ (page 263)

This suggests that there were specialised heuristics in AM
which had a disproportionate effect on its results. In fact,
in (Lenat 1982) Lenat proposes this as a way for writing
discovery programs:

‘Suppose a large collection of these heuristic strate-
gies has been assembled (e.g. by analyzing a great
many discoveries, and writing down new heuristic rules
whenever necessary) ... one can imagine starting from a
basic core of knowledge and “running” the heuristics to
generate new concepts. ... Such syntheses are precisely
what AM does.’ (p. 5)

This suggests that AM was written by Lenat looking at par-
ticular concepts or conjectures and adding in heuristics until
AM successfully found the result. This is true of many cre-
ative programs, but unfortunately with AM, sometimes the
heuristic was so fine-tuned it was introduced solely in order
for AM to re-invent a single concept, e.g., the concept of
number (by thinking of bags as numbers).

Returning to our measures, the situation in AM could be
characterised asK containing a small (possibly unary) sub-
setK ′ such thatft(K ′) was particularly high. Hence, we
could conclude thatm2 for AM would be greater than 1 and
that AM was fine-tuned to a certain extent. In summary,
we note that AM had more heuristics (242) than concepts it
would ordinarily produce in a session (around 180).

In (Colton 2001) we went to some lengths to argue that the
HR program was not fine-tuned. For instance, we pointed
out that the match production rule was inspired by the con-
cept of self-inversing elements in groups (those for which
a−1 = a), but when employed in number theory, it enabled
HR to re-invent the concept of square numbers. We did sim-
ilarly for all the production rules, but, more importantly, we
showed that all production rules were used in forming con-
cepts which were new to us (and sometimes new to mathe-
matics, as discussed in (Colton, Bundy, & Walsh 2000)).

We can also use the measures derived above to compare
two competing knowledge subsets. Suppose a programP
can be run with either with the knowledge baseK0 ∪K1 or
with K0 ∪ K2, whereK1 andK2 are in some sense alter-
native formulations that we wish to compare. Suppose that
both K1 and K2 are creatively useful, and that the high-
valued result set for the first of these isVK1 and for the
second knowledge base it isVK2 . If VK1 ⊂ VK2 , then it
follows thatDK1 ⊂ DK2 and alsoCK1 ⊆ CK2 . Hence
|DK1 ∩ CK1 | ≤ |DK2 ∩ CK2 |, soft(K1) ≥ ft(K2). That
is, the input knowledge variantK2 which corresponds to the
largerVK will at worst be as fine-tuned as the other input
knowledgeK1. If CK1 ⊂ CK2 , K2 will be less fine-tuned.

Such a situation occured during the development of HR
— as discussed in chapter 6 of (Colton 2001) — when
two production rules in HR were replaced by a new, more
general, rule. In particular, the conjunct rule was em-
ployed to take two concepts with, for example, definitions
p1(a, b, c) andp2(a, b, c) and produce a concept with def-
inition p1(a, b, c) ∧ p2(a, b, c) [wherep1 andp2 are predi-
cates defining some relation over objectsa, b andc]. The
common rule was designed to take a single concept with
definition p(a, b) and produce a concept with a definition
p(a, b)∧p(a, c). When writing a new rule, the compose rule,
which took two functionsf(a, b) andg(a, b) and produced
the conceptf(g(a, b)), we realised that this could be written
in such a way as to incorporate the functionality of the previ-
ous two also. The details of this are given in (Colton 2001),
but are not relevant here. In addition to making HR more
general and more comprehensible, the new rule covered all
of the output from the previous two and more. So, in this
case, the generalisation of the two previous rulesincreased
CK for HR so the new version was less fine-tuned than the
previous version. We hope to perform a more detailed ex-
amination of this case study in future.

Conclusions and Further Work

Of course, there is definitely a need for simulations, whereby
a program is written to re-produce discoveries made by hu-
mans. For example, the BACON programs (Langleyet al.
1987) were written to provide plausible ways for a com-
puter to re-discover certain laws from the physical sciences.
Such simulations often highlight general ways to proceed
and more creative programs are built as a result. However,
we believe that fine-tuning in programs purporting to be cre-
ative needs to be addressed. We have sketched a formalisa-
tion of what it means for a creative program to be fine-tuned
and we have noted that the more fine-tuned a program is,
the less creativity we attribute to it. This contributes to the
question of which processes can be deemed creative and so
enhances the approach to estimating the creativity of a pro-
gram based on its input and output. We believe this approach
is very important in the study of machine creativity.

Our approach may be applied to existing programs whose
set of inspiring itemsI is possible to identify. This would
then support or undermine claims of creativity. However,
since I may be difficult to identify in retrospect (other
than the set of all artefacts known to the programmer) the
main value of our work lies in its role as a guideline for
researchers currently writing creative programs (who can
record their inspiring set). In particular, such measures of
creativity are useful when writing improved versions of cre-
ative programs, as in the illustrative example above with HR.

More work is required on these measures. In particular,
these and some of the measures in (Ritchie 2001) depend
on the notion of an inspiring set, which may not apply com-
pletely to certain creative programs. For example, Cohen
may have improved the AARON program so that it could
draw trees, but the artefacts it produces are not just draw-
ings of trees, but of scenes with humans and trees in them,
and there is no particular drawing of a tree which acts as an
inspiring artefact. In this case, we would have to relax our
definition of inspiring set to include parts of artefacts rather
than entire artefacts. Similarly, to make these measures more
general, it is likely that we will need to adopt a more fuzzy
notion of good and bad artefacts.

The assessment of machine creativity is beginning to be
recognised as an important area of this field, with general
guidelines such as those in (Pease, Winterstein, & Colton
2001) required as well as concrete measures, such as those
presented in (Ritchie 2001) and those derived here. Such
measures are imperative if the study of machine creativity is
to become a formal research programme. Furthermore, we
hope that such notions will be very useful for researchers
writing creative programs in the future.

Acknowledgments

This work is supported by EPSRC grants GR/M98012 and
GR/M45030. The first author is also affiliated with the De-
partment of Computer Science, University of York. We
would like to thank Alan Smaill for some important input to
this work and the anonymous reviewers for their comments
on an earlier draft of this paper.

References
Binsted, K.; Pain, H.; and Ritchie, G. 1997. Children’s
evaluation of computer-generated punning riddles.Prag-
matics and Cognition5:2:309–358.
Binsted, K. 1996. Machine Humour: An Implemented
Model of Puns. Ph.D. Dissertation, Department of Artifi-
cial Intelligence, University of Edinburgh.
Boden, M, A. 1992.The Creative Mind. Abacus.
Cohen, H. 1995. The further exploits of AARON, painter.
Stanford Electronic Humanities Review4:2.
Colton, S.; Bundy, A.; and Walsh, T. 1999. HR: Automatic
concept formation in pure mathematics. InProceedings of
the 16th IJCAI, 786–791.
Colton, S.; Bundy, A.; and Walsh, T. 2000. Automatic in-
vention of integer sequences. InProceedings of the Seven-
teenth National Conference on Artificial Intelligence, 558–
563.
Colton, S. 2001. Automated Theory Formation in Pure
Mathematics. Ph.D. Dissertation, Division of Informatics,
University of Edinburgh.
Gerv́as, P. 2001. Generating poetry from a prose text: Cre-
ativity versus faithfulness. In Wiggins, G., ed.,Proceed-
ings of the AISB’01 Symposium on Artificial Intelligence
and Creativity in Arts and Science, 93–99.
Langley, P.; Simon, H.; Bradshaw, G.; andŻytkow, J. 1987.
Scientific Discovery - Computational Explorations of the
Creative Processes. MIT Press.
Lenat, D. 1982. AM: Discovery in mathematics as heuris-
tic search. In Lenat, D., and Davis, R., eds.,Knowledge-
Based Systems in Artificial Intelligence. McGraw-Hill Ad-
vanced Computer Science Series.
Miller, G.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller,
K.; and Tengi, R. 1990. Five papers on wordnet.Interna-
tional Journal of Lexicography3:4. Revised March 1993.
Pease, A.; Winterstein, D.; and Colton, S. 2001. Evaluating
machine creativity. InWorkshop on Creative Systems, 4th
International Conference on Case Based Reasoning.
Pereira, F.; Grilo, C.; Macedo, L.; and Cardoso, A. 1997.
Composing music with CBR. InFirst International Con-
ference on Computational Models of Creative Cognition,
Dublin, MIND-II.
Popper, K. 1972.Objective Knowledge. OUP.
Ribeiro, P.; Pereira, F. C.; Ferrand, M.; and Cardoso, A.
2001. Case-based melody generation with MuzaCazUza.
In Wiggins, G., ed.,Proceedings of the AISB’01 Sympo-
sium on Artificial Intelligence and Creativity in Arts and
Science, 67–74.
Ritchie, G., and Hanna, F. 1984. AM: A case study in
methodology.Artificial Intelligence23:249–268.
Ritchie, G. 2001. Assessing creativity. In Wiggins, G.,
ed., Proceedings of the AISB’01 Symposium on Artificial
Intelligence and Creativity in Arts and Science, 3–11.
Steel, G. 1999. Cross domain concept formation using
HR. Master’s thesis, Division of Informatics, University of
Edinburgh.

